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ABSTRACT

After reviewing the background, this article discusses the recently discovered examples of hybrid propa-

gating structures consisting of vortex dipoles and comoving gravity waves undergoing wave capture. It is

shown how these examples fall outside the scope of the Lighthill theory of spontaneous imbalance and,

concomitantly, outside the scope of shallow-water dynamics. Besides the fact that going from shallow-water

to continuous stratification allows disparate vertical scales—small for inertia–gravity waves and large for

vortical motion—the key points are 1) that by contrast with cases covered by the Lighthill theory, the wave

source feels a substantial radiation reaction when Rossby numbers R * 1, so that the source cannot be

prescribed in advance; 2) that examples of this sort may supply exceptions to the general rule that sponta-

neous imbalance is exponentially small in R; and 3) that unsteady vortical motion in continuous stratification

can stay close to balance thanks to three quite separate mechanisms. These are as follows: first, the near-

suppression, by the Lighthill mechanism, of large-scale imbalance (inertia–gravity waves of large horizontal

scale), where ‘‘large’’ means large relative to a Rossby deformation length LD characterizing the vortical

motion; second, the flaccidity, and hence near-steadiness, of LD-wide jets that meander and form loops, Gulf-

Stream-like, on streamwise scales� LD; and third, the dissipation of small-scale imbalance by wave capture

leading to wave breaking, which is generically probable in an environment of random shear and straining.

Shallow-water models include the first two mechanisms but exclude the third.

1. Introduction

Lighthill’s celebrated paper of 19521 was the first to

study spontaneous imbalance. It is relevant to some

cases of spontaneous imbalance and not to others. Here

I begin with a review of the Lighthill theory and its

genesis, then go on to discuss some examples that vio-

late its assumptions.

One such example is the hybrid vortex–gravity insta-

bility discovered by Miles (1957), the first of many such

hybrid instabilities known today. Another is the exam-

ple discovered by O’Sullivan and Dunkerton (1995,

hereafter OSD95), in which spontaneous imbalance in a

nonlinear baroclinic-wave life cycle of type 1 (LC1; e.g.,

Thorncroft et al. 1993 and references therein) produces

internal inertia–gravity waves having small scales close

to the grid scale of the numerical model. The small

scales seem to put OSD95’s example at an opposite

extreme to those in which the Lighthill theory is rele-

vant. The Lighthill theory describes scenarios in which

unsteady vortical motion spontaneously emits inertia–

gravity waves having horizontal scales large in com-

parison with the horizontal scales of the vortical motion.

Thus, there was an understandable suspicion, at first,

that gravity waves on scales close to the grid scale could,

perhaps, be numerical artifacts.

However, with the growth of computer power it has

become clear from very many subsequent studies that

spontaneous imbalance of the kind found in OSD95 is

a real fluid-dynamical phenomenon, not a numerical

artifact. Conspicuously similar to OSD95 have been the

examples recently discovered by Snyder et al. (2007,

hereafter S07) and Viúdez (2006, 2007, 2008, hereafter

respectively V06, V07, and V08), in which the vortical

motions are, however, much simpler, consisting of
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propagating vortex dipoles. In further contrast with the

Lighthill theory, the gravity wave emission is revealed

as a steady, mountain-wave-like process in the sense

that the waves have zero phase speed in the comoving

reference frame. Before that, Snyder et al. (1993) had

studied gravity wave emission from a collapsed surface

front held steady by numerical diffusivities—already

showing the possibility of an essentially steady wave

emission process—and Plougonven and Snyder (2005)

had shown by careful analysis that the reason for the

small scales in examples like OSD95 is not the wave

emission process at all, but rather the subsequent re-

fraction leading to ‘‘wave capture.’’ This turns out to be

true of the dipole examples as well.

Wave capture explains the tendency for the gravity

wave scales to approach the grid scale in the OSD95 and

dipole cases. Wave capture is the counterpart of critical-

layer absorption that results not from vertical shear

alone but from the straining of wave crests by large-

scale horizontal deformation fields, modified by vertical

shear (Jones 1969; Badulin and Shrira 1993). A compre-

hensive review may be found in Bühler and McIntyre

(2005). The horizontal straining shrinks the wavelength

exponentially fast, rather than algebraically. The wave

packet behavior becomes passive-tracer-like as the

group velocity goes to zero. Mathematically, the flow fields

tend toward a singular limit. More physically relevant is

that the linearized wave theory predicts its own break-

down in a manner suggesting the onset of wave breaking

in reality.

The new dipole examples have turned out to be of key

importance in that they have allowed the wave source

region and mechanism to be identified unequivocally, as

summarized in section 6 below. The horizontal and

vertical scales of the source region are broadly compa-

rable to the scales of the dipole itself and are much

larger than the scales of the most conspicuous gravity

waves, which are those undergoing capture at some re-

move from the source. However, for order-unity Rossby

and Richardson numbers there is no scale separation

within the source region. The wave source is therefore

strongly influenced by the radiation reaction exerted on

the source region by the waves. In the dipole examples

this radiation reaction has a recognizable fingerprint, in

that it destroys the fore–aft symmetry of what would

otherwise be a balanced omega or vertical-velocity

field. The fore–aft asymmetry becomes conspicuous—

completely reshaping the omega field—as soon as Rossby

and Richardson numbers attain order-unity values. In

terms of the mountain wave analogy, the radiation re-

action drastically reshapes the mountain. One cannot

specify the mountain shape in advance. By contrast, the

main point of the Lighthill theory is that, when the

theory applies, the radiation reaction is so weak that one

can, in principle, prescribe the wave source in advance.

There is a final twist in the tail of this tale. There is a

sense in which consistent high-order potential vorticity

(PV) inversion operators (hyperbalance inversion op-

erators) appear capable of delivering not only the vor-

tical motion but also the comoving gravity waves, as

explained in the concluding remarks below. This makes

a peculiarly unexpected connection with the general-

ized, Bayesian PV inversion operators proposed, for

quite different reasons, by Hakim (2008).

This article is dedicated to my former student Rupert

Ford, whose meteoric career was tragically cut short on

30 March 2001 (McIntyre 2001, 2008), and to my former

colleague Sir James Lighthill who died on 17 July 1998,

in typically magnificent style, on one of his ‘‘adventure

swims’’ around the island of Sark. Both were extraor-

dinary thinkers who made far-reaching contributions

to our subject, and both were persons of exemplary

warmth, generosity, and scientific integrity.

2. Lighthill’s theory of acoustic imbalance

While still a terrifyingly bright young man—fresh from

wartime aerodynamics after his journey through pure

mathematics with schoolmate Freeman Dyson—James

Lighthill (1952) singlehandedly put his finger on a key

aspect of the phenomenon of spontaneous imbalance.

Addressing the problem of noise emitted by jet air-

craft, Lighthill studied the simplest thought experiment

in which the phenomenon arises. For unstratified, non-

rotating, compressible flow in an unbounded domain

with no gravity or other external force, he asked how a

freely evolving vortical flow occupying some finite region

might emit sound waves, even when the Mach number

M 5 U/cs � 1. Here, U is a typical flow speed and cs is

the sound speed. By combining simple mathematics with

a careful and powerful heuristic argument based on

physical insight, Lighthill showed that practically any

unsteady vortical flow will spontaneously emit sound for

any value of M, however small. He also showed that

through destructive interference the sound emission is

surprisingly weak when M � 1, far weaker than one

would estimate from naive order-of-magnitude analyses.

The ideas are well known and are reviewed, for instance,

in Ford et al. (2000, section 2). From an atmosphere–

ocean dynamics perspective, the emission of sound may

be viewed as the simplest possible example of sponta-

neous imbalance. In Lighthill’s original problem, the

balance is elastostatic. Sound waves represent the only

possible kind of imbalance.

If the spontaneous emission of sound can be neglected

—that is, if one can neglect the imbalance—then one can
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describe the dynamics in the classical way as a purely

vortical flow. What does that mean? The crucial feature

is that one can invert the vorticity field at each instant to

obtain the velocity, pressure, and density fields.

In an unbounded domain, one can do this via the Biot–

Savart integral [e.g., Batchelor 1967, Eq. (2.4.11)] or re-

finements thereof. One can equally well invert what

might be called the acoustic PV. This is the vorticity di-

vided by the mass density. It has the simplest evolution

equation and visualizability [e.g., Batchelor 1967, Eq.

(5.3.6)]. Invertibility means that there is a purely diag-

nostic functional relation—nonlocal, of course—between

the vorticity or PV field and everything else. Knowledge

of the vorticity or PV field at one instant implies

knowledge of everything else at that instant. One can

therefore use the standard language of aerodynamics and

speak of the velocity field ‘‘induced’’ at each instant by a

given vorticity field (e.g., Lighthill 1963). Thinking thus in

terms of vorticity or PV inversion makes explicit the most

basic peculiarity of vortex dynamics—the point missed

when only local balances of terms are considered—the

apparent action at a distance whereby a vortex contrib-

utes instantaneously to the motion of other vortices.

Of course such action or influence cannot really travel

faster than sound. But Lighthill’s arguments showed, in

effect, that using balance and invertibility to describe

the vortex dynamics, as if one did have instantaneous

action at a distance, can be far more accurate than naive

order-of-magnitude analysis would predict. And, as

Lighthill was careful to point out, that is the very reason

why his ideas make sense. The prediction of destructive

interference and therefore weak sound emission de-

pends on being able to suppose that the vortical flow can

be regarded as known, in principle, independently of the

sound emission:

All the evidence of experiment, and of the theory to be
developed below, is that the sound produced is so weak
relative to the motions producing it that no significant
back-reaction can be expected . . . (Lighthill 1952)

This means that one can in principle compute the vor-

tical flow evolution to high accuracy—and the weaker

the spontaneous emission, the higher the accuracy—then

afterward compute the emission with the nonlinear

terms treated as known source terms in a wave equation.

The destructive interference arises from the long wave-

length l of the sound emitted, relative to the scales of

the vortical motion, and the special form of the source

terms for all cases of vortex motion. Each term takes the

form of a second spatial derivative [Lighthill 1952, Eq.

(4c); Ford et al. 2000, Eq. (2)]. Thus, the whole picture is

self-consistent—the more so, the weaker the emission

(Ford et al. 2002).

3. Shallow-water rotating flow

The ideas of balance, imbalance, and PV inversion

carry over at once to shallow water dynamics with only

trivial changes of wording. Sound waves are replaced by

gravity waves. The Mach number M 5 U/cs � 1 is

replaced by the Froude number, in its standard sense

F 5 U/c � 1, where c is the gravity wave speed. The

acoustic PV is replaced by the Rossby PV, absolute

vorticity divided by layer depth (Rossby 1936).2

It is well known that the shallow-water equations are

identical to the two-dimensional equations for a perfect

gas with g 5 2. Here, g is the ratio of specific heats,

whose numerical value is an unimportant detail. So

Lighthill’s ideas carry over without modification as long

as there are no Coriolis terms. For two-dimensional

flow, the weakening of spontaneous imbalance and

spontaneous gravity wave emission as F diminishes can

be expressed by saying that if c is held constant while U

is diminished, then the gravity wave power radiated

goes as U7. The corresponding dimensionless measure

of imbalance in two dimensions is F 4 (Ford et al. 2000).

If Coriolis terms are introduced, then Lighthill’s ideas

still carry over qualitatively (Ford et al. 2000, 2002).

Pure gravity waves are replaced by inertia–gravity

waves. The problem is no longer identical to Lighthill’s

2 A reviewer has insisted that the PV concept dates from well

before 1936. That is arguably the case provided that one uses the

Lagrangian description of fluid dynamics. Then the material in-

variance of PV for ideal fluid flow is a straightforward corollary of

nineteenth-century vortex dynamical theory. Most simply, the

Rossby–Ertel PV is proportional to the absolute Kelvin circulation

around an infinitesimally small closed material contour C lying on

a stratification surface, isentropic or isopycnal—or on the free

surface of a shallow-water system—divided by the mass of the

infinitesimal material fluid element whose perimeter is C. For

continuous stratification this element is bounded above and below

by neighboring stratification surfaces [for more detail, see McIn-

tyre (2003)]. Thus, PV invariance follows almost trivially from

mass conservation and Kelvin’s circulation theorem. By using

the full machinery of the Lagrangian description, one may also

relate the PV to a quantity from nineteenth-century theory called

‘‘Beltrami’s material vorticity’’ (Viúdez 2001). This is a way of

describing the three-dimensional vorticity field mapped into La-

grangian label space. The mapping is defined as a kinematically

possible fluid flow with the vortex lines and stratification surfaces

frozen into the fluid. Of course the usefulness of the PV concept as

first published by Rossby, both for shallow water (Rossby 1936)

and for multilayer and continuous stratification (Rossby 1940), lies

in being able to avoid the Lagrangian description. This is useful

because, for one thing, PV inversion is quintessentially an Eulerian

or field-theoretic procedure. We may note that 1936 is also the year

in which Lighthill began his high-school mathematical journey

with Dyson at the age of 12, and 1940 the year in which they were

both prevented, by their youth, from going on to Cambridge de-

spite having won scholarships.
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because, for one thing, the far field into which inertia–

gravity waves are radiated is now at rest in the rotating

frame rather than in an inertial frame. Furthermore,

there are now two small parameters. The vortical mo-

tion is characterized by a Rossby number R as well as by

a Froude number F, and there are a variety of asymp-

totic limits corresponding to R or F, or both, being small

in one sense or another. The full Lighthill picture has

been shown by detailed asymptotic analysis to apply in

the limit where F! 0 faster than R, that is, with F� R

(Ford et al. 2000), in which case the dimensionless

spontaneous imbalance is still O(F 4) as F ! 0. How-

ever, in complementary cases where R! 0 with F * R,

the spontaneous imbalance tends to become exponen-

tially small in R (Ford 1994; Ford et al. 2002; Vanneste

and Yavneh 2004; Wirosoetisno 2004; Ólafsdóttir et al.

2008; Temam and Wirosoetisno 2007; R. Temam and

D. Wirosoetisno 2008, manuscript submitted to SIAM

J. Math. Anal., hereafter TW).3

Ford et al. (2002) argued that this exponential

smallness—associated with vortical-flow unsteadiness,

with smooth time dependence implying an exponen-

tially decaying spectral tail—makes Lighthill’s ideas still

more powerful. Not only is the back-reaction still

weaker, but on top of that, in some cases at least, the

destructive–interference aspect remains significant. The

inertia–gravity wave frequencies emitted tend to be so

close to the inertial frequency f that horizontal wave-

lengths l � LD, where LD is the Rossby deformation

length. Vortical flows often have horizontal scales ; LD

not only in the shallow-water system but also in strati-

fied cases in which there is a dominant vertical scale.4

The recent work of Ólafsdóttir et al. (2008) confirms the

l� LD behavior in a clear-cut stratified case in which a

weak ellipsoidal vortex of horizontal dimension LD is

sheared horizontally by a background flow. In that case,

l scales as R21LD as R ! 0. Most importantly, the

weakness of the back-reaction continues to mean that

PV inversion can be accurate—indeed, yet more accu-

rate than before—with exponentially rather than alge-

braically small error.

4. The slow quasimanifold

Lighthill’s ideas, and their extension to rotating sys-

tems, remain important also in their complementary

aspect. The wave equation with an unsteady wave-

source term shows that spontaneous imbalance, weak

though it may be, must be generically nonzero if we

discount the unlikely event that destructive interference

is perfect. Robustly, therefore, albeit heuristically,

Lighthill’s arguments are enough to show that there can

be no such thing as an invariant slow manifold of the

primitive equations, in the strict sense of Leith and

Lorenz. This aspect was emphasized and carefully dis-

cussed by Ford et al. (2000, 2002). The idea of a slow

manifold—a sharply defined hypersurface within phase

space, with zero thickness—must be replaced by the

idea of a fuzzy ‘‘slow quasimanifold,’’ a chaotic layer or

stochastic layer of finite thickness, of the generic sort

familiar from studies of low-order dynamical systems,

such as the perturbed simple pendulum.

As did Rupert Ford, I prefer to avoid self-contradic-

tory terms such as ‘‘fuzzy manifold,’’ ‘‘hairy bald head,’’

‘‘asymmetric symmetric baroclinic instability,’’ ‘‘ageo-

strophic geostrophic adjustment,’’ and so on, despite

the ubiquity of such terms in human language (e.g.,

McIntyre 1997)—hence the term ‘‘slow quasimanifold’’

advocated in Ford et al. (2000). Accuracy of balance and

inversion means only that the layer is thin, not that it is

actually a manifold.

Historically, understanding could well have been

impeded, as often happens, by the persistence of self-

contradictory language together with the Humpty

Dumpty credo that words are unimportant. The ‘‘fuzzy

slow manifold’’—the ‘‘hairy bald head’’ of atmosphere–

ocean dynamics—was recognized independently, long

ago, by some researchers at least (Errico 1982; Warn

1997).5 Back then it seems that Errico and Warn had no

knowledge of Lighthill’s original work. However, Erri-

co’s sections 9 and 10 take us very close to Lighthill’s

ideas, including the insight that the inertia–gravity or

fast modes of the standard normal-mode description

respond directly to high frequencies existing within the
quasi-geostrophic solution, i.e., to the ‘‘tail’’ of the geo-
strophic power spectrum (Errico 1982, p. 585b).

3 In case the reader wishes to consult this manuscript, it is

available at the entry numbered 0808.2878 in the well-known on-

line database at arXiv.
4 This is especially clear for continuously stratified cases in which

the buoyancy frequency N is not too strongly variable. Theory and

laboratory experiment with N ; constant indicate that not only the

velocity and buoyancy fields but also the vortex cores themselves,

the PV anomalies, tend to have horizontal-to-vertical aspect ratios

of the order of Prandtl’s ratio N/f. Other aspect ratios are usually

unstable (e.g., Miyazaki and Fukumoto 1992; Dritschel and de la

Torre Juárez 1996; Billant and Chomaz 2000). In other words, the

horizontal scale ;LD when LD is defined as the vertical scale times

N/f.

5 The correct date for Warn’s pioneering contribution is 1983.

However, bureaucracy prevents me from acknowledging this in the

list of references. Warn’s contribution was rejected for publication

in 1983, being perhaps too far ahead of its time.
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Errico’s section 9 tests the idea that one can first de-

scribe the vortical motion by itself and then afterward

treat it as a known source for inertia–gravity waves,

essentially as in Lighthill. Warn’s paper was the first

to point out, explicitly, that the evidence from Errico’s

work argued against the existence of a slow manifold.

Just how thin the slow quasimanifold can be in shallow-

water flows, how nearly manifold-like, with order-unity

values of F and R, well outside the parameter regimes

to which Lighthill’s ideas are manifestly applicable,

remains astonishing and still poses a challenge to our

understanding. High-order shallow-water balanced

models based on advecting the exact Rossby PV were

first shown by Norton (1988) to maintain an uncanny

accuracy over several eddy turnaround times, as judged

by their ability to track primitive equation evolution

even for order-unity values of F and R; see also

McIntyre and Norton (1990, 2000, hereafter MN00),

and Mohebalhojeh and McIntyre (2007b). This behav-

ior was a total surprise when it was first discovered.

However, the uncanny accuracy—and, by implication,

the weakness of spontaneous imbalance in these par-

ticular flows despite order-unity F and R—can with

hindsight be related to the flaccidity and slow evolution

of jets meandering Gulf-Stream-like, or river-like, on

scales much larger than the Rossby deformation length

LD (e.g., Nycander et al. 1993 and references therein;

McIntyre 2008 and references therein). The relative

thinness ;LD and near-steadiness of such jets helps

to keep their Lagrangian time scales considerably lon-

ger than inertia-wave time scales f 21, even for order-

unity values of the Rossby number R based on jet

width LD. This is so far outside the scope of Lighthill

theory that the jet flaccidity, or fluviality, characteristic

of the regime R ; F and apparently persisting out to

R ; F ; 1, is probably best considered as a sepa-

rate, second mechanism for keeping flows close to

balance.

5. Some classic hybrid vortex–gravity structures

It is crucial to Lighthill’s picture that the vortical

motion be unsteady. If only for that reason, the propa-

gating dipole vortex–gravity structures described in

S07 and in V06, V07, and V08 must fall entirely out-

side any such picture. The propagation of those struc-

tures is very close to being steady. Before discussing

them we may remark that other such hybrid structures

have long been known in which, however, the vortical

part itself takes the form of a wave—a Rossby wave in

the natural, generalized sense of the term, propagating

on a gradient of vorticity or PV (e.g., Miles 1957 and

very many others).6 Here the typical scenario is an ex-

ponentially growing instability consisting of a counter-

propagating, phase-locked pair of waves, one being a

Rossby and the other a gravity wave. However, in some

cases there are also neutrally stable, steadily propagat-

ing modes at certain wavelengths. Because of the

steadiness or near-steadiness, it is again clear that we

have examples of spontaneous imbalance that fall out-

side any Lighthill-type scenario.

Lighthill himself cautioned that there would be ex-

ceptions to his theory. Here is how he continues the

passage quoted in section 2 above:

. . . no significant back-reaction can be expected unless
there is . . . a resonator present to amplify the sound

or, in the present context, the gravity wave. That is, the

self-consistency of Lighthill’s picture depends on ex-

cluding resonance phenomena. The hybrid instabilities

just mentioned can, of course, be recognized as reso-

nance phenomena. The Miles (1957) instability is a clear-

cut example. The gravity wave is a surface gravity wave

on water, and the Rossby wave propagates on a vertical

vorticity gradient in the air above. Once they are phase-

locked together, each wave resonantly excites the other.

So if we say that the Rossby wave excites the gravity

wave, then we must admit that, equally, the gravity wave

exerts a significant back-reaction on the Rossby wave.

6. Vortex dipoles in continuous stratification

The dipole examples of S07 and of V06, V07, and

V08—and by implication the OSD95 example and its

successors—belong in yet another category. Continuous

stable stratification is an essential factor. The sponta-

neous imbalance in these examples is quite different

from that in classical Lighthill-type scenarios and quite

different, also, from that in the hybrid instabilities and

their neutral modes.

Rather than an equal partnership between the vortical

and gravity wave parts, each of which resonantly excites

the other, we have what looks at first sight like a master–

slave relation—‘‘slave’’ in the general sense and not the

slow-manifold sense—and, to that extent, something

more like a Lighthill scenario. There is no resonance

6 The idea of explaining shear instabilities in terms of phase-

locked counterpropagating waves has a long history, going back at

least as far as Taylor (1931) and Lighthill (1963, p. 93). Taylor’s

classic paper is reproduced on pp. 219–239 of The Scientific Papers

of Sir Geoffrey Ingram Taylor, vol. II, ed. G. K. Batchelor, Cam-

bridge University Press (1960). The idea has been greatly devel-

oped in recent years; see, for example, Ford (1994), Methven et al.

(2005), and references therein.
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here, as shown shortly. However, on closer examination

we shall see that it is not a case of master and slave

either. Appearances are deceptive in this regard.

Figure 1 summarizes the two best-resolved exam-

ples, with vertical sections on the left and horizontal

on the right. The top left panel, after S07’s Fig. 9,

shows the streamwise vertical midplane for a dipole

structure induced mainly by a distribution of poten-

tial-temperature anomalies on a solid bottom bound-

ary z 5 0. This is equivalent to a Bretherton PV delta

function. The interior PV is isentropically uniform, to

a first approximation. The faint thick contour on the

right of the top left panel marks the separatrix or |v| 5

0 isotach in the comoving reference frame, where |v| is

horizontal flow speed. The other contours are the iso-

tachs for horizontal rightward flow speeds 1, 2, 3, . . . ,

7 m s21 in the comoving frame. The shading shows the

omega or vertical velocity field (see caption). The most

FIG. 1. Rightward-propagating 3D vortex dipoles shown by vertical and horizontal sections representing the two

best-resolved cases in (top) S07 and in (bottom) V06, V07, and V08 (from V07). The vertical sections on the left are

taken along the heavy straight lines seen in the horizontal sections on the right. The gray shading in each panel

shows the omega or vertical velocity field, which oscillates around zero with signs indicated by the white arrows. The

vertical section at bottom left shows the bottom half, z , 0, of the dipole described in V07. The heavy horizontal

lines mark depths z with nominal values 20.21, 20.9 in the dimensionless units used in V07. The horizontal section

at bottom right is at z 5 20.9, and at top right is at z 5 0.25 km. The vertical section at bottom left has been

expanded vertically so as to agree with the coordinate aspect ratio of the section at top left after scaling by Prandtl’s

ratio N/f, whose value at top left is 100 (5 200 km/2 km). Further detail can be seen in S07’s Figs. 10 and 11 and in

V07’s Figs. 1–4 and 11–15. In V07’s Fig. 2 the origin of coordinates needs correction: the horizontal midplane of the

dipole is at z 5 0. The top half of the dipole is never shown. The three-dimensional PV anomalies in V07’s case

occupy the vertical range 21.2 # z # 1.2 approximately. The nominal z values are Boussinesq isopycnal coordinate

values defined in terms of the 512 stratification layers used in the numerical discretization, representing continuous

stratification to good approximation. The computational domains are larger than shown and are respectively a

doubly periodic domain with a sponge lid in S07 and a triply periodic domain in V07. The thin contours at top left

mark horizontal rightward flow speeds |v| 5 1, 2, 3,. . ., 7 m s21 in the comoving frame of reference. The faint thick

contour marks the separatrix or |v| 5 0 surface. The thin contours in the horizontal section at top right give the

surface potential temperature field, the Bretherton PV delta function whose inversion dominates S07’s dipole

structure.
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conspicuous gravity waves are the nearly plane waves

inside the separatrix. In the wave-capture limit, the

wavelength tends to zero and the wave crests tilt toward

the isotachs, as verified in finer detail in S07’s Fig. 10.

The bottom left panel, after V07’s Fig. 2, shows in

grayscale the vertical velocity field in the bottom half

of a different dipole flow. Here there are no solid

boundaries. Instead of a PV delta function, there are

continuously distributed PV anomalies occupying a

substantial volume within the three-dimensional dipole

structure. The vertical section is slightly skewed from the

streamwise vertical midplane but shows a view that

would be qualitatively similar to the streamwise vertical

midplane view. The complete picture in the vertical

midplane is therefore qualitatively like the bottom left

panel together with its sign-reversed reflection in a

horizontal mirror at z 5 0, in other words, qualitatively

like the two left-hand panels viewed together. Both the

small-scale gravity waves and the central pattern of

vertical velocities, marked by the white arrows, are

similar in the two cases despite the very different PV

distributions.

In the horizontal sections on the right (see caption),

the shading again shows the vertical velocity field. In

both cases the most conspicuous gravity waves are be-

ing advected cyclonically and anticyclonically around

each half of the dipole, precisely as expected from a

wave-capture scenario. The cyclonic–anticyclonic asym-

metry is related to the fact that Rossby numbers R

are not small. Indeed, R values are close to unity in a

natural quantitative sense to be made precise in the

next section.

Now the most conspicuous gravity waves are nearly

plane waves in a locally valid approximation. They

therefore have well-defined group velocities and their

propagation can be well described by ray theory. In the

vertical midplane the group velocities relative to the

comoving frame, including the contribution from ad-

vection by the background flow, are directed across the

wave crests and away from the central region. Apart

from the diminishing wavelengths this is qualitatively

the same as in classical mountain-wave problems with

uniform flow and uniform buoyancy frequency N, sat-

isfying a radiation condition at infinity.

We can therefore identify the source region unam-

biguously. It is the central region marked by the white

arrows. We can also unambiguously deduce that the back-

reflection required for resonant-cavity behavior is absent.

Resonance has no role. In the standard ray-theoretical

manner the propagation is accurately one-way, from the

central source region toward the region of wave capture

near the forward separatrix. The scale varies smoothly

and continuously all the way from the half wavelength

indicated by the spacing of the white arrows down to

the smallest scales approaching the separatrix.

As indicated schematically by the white arrows, the

velocity field in the source region above z 5 0 shows a

simple pattern of excess descent behind the center of the

dipole and excess ascent ahead, and vice versa below z 5

0, where ‘‘excess’’ means additional to the larger-scale

quadrupolar pattern of vertical motion characteristic of

the quasigeostrophic limit. This point is most clearly

brought out in S07’s Fig. 11 (in the top row of color plots,

not reproduced here). So on the streamwise vertical

midplane of the dipole where the quasigeostrophic ver-

tical motion vanishes, the streamlines and stratification

surfaces bend toward the horizontal midplane or surface

z 5 0, at the center of which the rightward flow speed |v|

in the comoving frame is close to maximal, as seen from

the lowermost (7 m s21) contour at the top left in Fig.

1 above. The bending of the stratification surfaces toward

z 5 0, common to S07 and V07, is clearly a robust feature

and is just what one would expect dynamically from the

Bernoulli relation, together with hydrostatic balance

and the crowding of streamlines around the central point

on z 5 0.

Now the Bernoulli and other inertial effects are not

enough in themselves to cause substantial imbalance

and wave emission. This point is clear from the known

shallow-water examples, including those mentioned at

the end of section 4. Bernoulli effects are strongly pre-

sent in shallow-water motion at order-unity Froude and

Rossby numbers F, R, for instance in the jet exit regions

in MN00’s Fig. 2a. However, in those examples they

manifest themselves hardly at all as imbalance but

rather, almost entirely, as nonlinear modifications to the

balance condition and PV inversion operator. The same

thing is seen in classic two-layer studies such as that of

Van Tuyl and Young (1982), in which the comoving

‘‘gravity–inertia signal’’ is essentially the same nonlin-

ear modification to balance, with negligible gravity

wave emission. Bernoulli and other inertial effects are

fully represented by nonlinear terms such as = � (v � =v)

within all the most accurate balance and inversion op-

erators. So a strong Bernoulli effect does not, of itself,

necessarily imply substantial imbalance and a strong

gravity wave source.

What most plainly distinguishes the present problem

from the shallow-water and two-layer examples is the

different wave dispersion relation for continuous strat-

ification, which allows not only wave capture but also

the freedom, in the wave field, to fit the central flow

scales indicated by the half-wavelength spacing of the

white arrows and the concomitant vertical scale with

aspect ratio f/N. This permits wave emission with no

spatial destructive interference as well as permitting the
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waves to escape as though they satisfied a radiation

condition, as already remarked.

Along with the order-unity R values this state of

things implies, in turn, that there is a substantial back-

reaction upon the central source region in the form of

a radiation reaction, like the power drawn by an effi-

cient radio antenna. In summary, 1) the order-unity

importance of Bernoulli and other inertial effects and

2) the approximate spatial and temporal scale

matching between the source and the emitted waves

(temporal as well as spatial when R ; 1) together

imply that there is a radiation reaction on the central

source region having a substantial, leading-order ef-

fect on the dynamics.

By itself, the Bernoulli effect in the streamwise

midplane would produce a pattern of motion and

stratification-surface distortion having fore–aft symme-

try. This is the symmetry suggested by looking only at

the white arrows and thin contours in Fig. 1. Indeed, such

fore–aft symmetry is an exact property of balanced,

purely vortical motion induced by PV anomalies with the

same symmetry. It is related to the general time sym-

metry or ‘‘sign reversal property’’ discussed in Ford et al.

(2000). So the fore–aft asymmetry in the vertical-motion

fields actually found in the central region—conspicuous

in the top right panel especially—must be a consequence

of the radiation reaction. That conclusion is further

supported by the top row of S07’s Fig. 11, showing the

vertical velocity field in five cases with R values 0.125, 0.5,

0.75, 1.0, and 1.5 times the value for Fig. 1 above. The first

case shows almost perfect fore–aft symmetry and the

others increasing fore–aft asymmetry, very strong in the

last case.

This says, then, that when R * 1 the wave emission is

not an affair of master and slave. It is an affair of

bootstrapping. That is, it depends on an intimate, two-

way interplay between the inertial effects in the source

region and the radiation reaction on that region, in-

troducing a local arrow of time. The source emits the

radiation, but the radiation reaction reshapes the

source. It is as if one had a mountain-wave problem in

which the mountain were elastic and substantially

changed its shape in response to the surface-pressure

field, in turn creating a large change in the vertical

velocity field.

So we have here something that is about as far from a

Lighthill scenario as it is possible to imagine. With the

source strength so intimately dependent on the radia-

tion reaction, the source strength cannot be considered

to be known in advance. This insight is, of course,

consistent with the standard remark that when R *

1—see next section—one should not expect to be able

to distinguish balance from imbalance (i.e., to distin-

guish vortical motion from gravity wave motion) even

in principle. The distinction becomes meaningless and

the slow quasimanifold can no longer be regarded as

thin in any sense. No mathematical device, no manip-

ulation of the equations, however ingenious, can ever

hope to produce a unique and clear-cut separation

between balance and imbalance within such a source

region. Arguably, a tendency to forget this fact has

impeded understanding in past decades.

Further support for the picture just sketched comes

from the work of V07 and V08. It was found there that

even the iterative ramping procedure of Viúdez and

Dritschel (2004) called ‘‘optimal PV balance’’—

perhaps the closest to an objective balancing proce-

dure one is ever likely to get—failed to disentangle the

flow within the central source region into balanced and

imbalanced parts. (See the discussion on p. 364 of V07,

noting incidentally that ‘‘upper’’ means slightly below

the horizontal midplane z 5 0.) In section 8 below we

remark that a corresponding ambiguity shows up in the

equations defining high-order balance and PV inver-

sion operators.

7. The dependence on R

Let us look more closely at the role of the Rossby

number R and the most natural way to define R in this

problem. To get temporal as well as spatial scale

matching in the central source region—an efficient

radio antenna, so to speak—the particle travel time

through a half wavelength of the pattern (say, th) must

satisfy th & p / f. That is, the travel time needs to be

about half an inertial period or less. So it is natural to

define R for this purpose in the standard Lagrangian

sense (e.g., Hoskins 1975; Koch and Dorian 1988;

Zülicke and Peters 2006, 2008 and references therein),

as

R 5 RLagr 5
p

thf
(1)

and to anticipate that RLagr * 1 should characterize

efficient radiation and a substantial radiation reaction

on the central region not only qualitatively but also

quantitatively to moderate accuracy.

From the spacing of the white arrows in S07’s case

at top left in Fig. 1 we see that the horizontal half

wavelength there is close to 250 km. The particle ve-

locity through the lowest part of the central region, be-

tween the bottom two contours, is around 6 m s21. If we

take th 5 250 3 103/6 5 4.2 3 104 s then, with f 5 1.0 3

1024 s21 (S07, p. 4419a), we have RLagr 5 p/(th f) 5

p/4.2 5 0.75. The two cases described in V07 and V08
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have RLagr 5 0.44 and 1.1. The value RLagr 5 1.1 applies

to V07’s case reproduced in the lower half of Fig. 1

above.7

In S07 the case with the largest RLagr value (not re-

produced here) has a value 1.5 times greater than for the

case in Fig. 1 above. In the former case, showing very

strong fore–aft asymmetry in the vertical velocity field

(S07 Fig. 11, top right), we have RLagr 5 0.75 3 1.5, just

over 1.1.

We remark finally that some dipole examples of this

sort may violate the usual rule that the strength of spon-

taneous imbalance diminishes exponentially as R ! 0.

The reasons are as follows.

As R ! 0, particle travel times across the central re-

gion increase relative to p/f. Then quasi-steady, moun-

tain-wave-like gravity wave emission has to rely on

the diminishing spatial scales in the velocity and buoy-

ancy fields that then correspond to intrinsic wave fre-

quencies * f. So the amplitude of wave emission will

depend on a spatial projection integral whose integrand

consists of a rapidly oscillating factor, representing the

diminishing wave scales, multiplied by a slowly varying

factor coming from the velocity and buoyancy fields of

the vortex dipole. Thus, as R diminishes from order-unity

values toward zero, destructive interference re-enters the

problem, wave emission weakens, and to that extent a

Lighthill-type treatment becomes appropriate again de-

spite the motion being quasi-steady, and despite the scale

disparity being in the opposite sense, with gravity wave

scales small relative to vortex scales.

The projection integral will diminish with R in a

manner depending on the smoothness of the dipole’s

velocity field. With a completely smooth velocity field,

perhaps smoothed by artificial viscosity, the integral,

over the whole spatial domain, if infinite or periodic,

may be expected to diminish exponentially. Indeed, such

heuristics are consistent with a rigorous upper bound O

[exp(2const. R21/4)] on spontaneous imbalance, recently

established by TW on the assumption of diffusive flow

(for buoyancy as well as momentum), together with

compatible smoothness conditions (Gevrey regularity)

and triply periodic boundary conditions as in V06, V07,

and V08.

However, with nondiffusive, ideal-fluid flow and a

velocity field that is less smooth (such as would be ex-

pected, for instance, with isentropic distributions of PV

that have jump discontinuities), the projection integral

might instead diminish algebraically with R. Here, the R

dependence would be that of a set of ideal-fluid cases

computed over a finite time interval before the onset of

wave breaking via wave capture.

This speculation is based on the idea that the

smoothness of the actual velocity and mass fields should

be related to the smoothness of the fields produced by a

PV inversion operator. Such operators are well known

to be nonlocal smoothing operators but are, of course,

incapable of producing velocity and mass fields that are

infinitely smooth at a PV discontinuity. The projection

integral expresses the nonlocal aspects of the wave

emission dynamics and so might be expected to depend

on the dipole’s global fields and not just on, for instance,

the shapes of particle trajectories, which in a steady flow

must follow PV contours and may well be smoother

than the velocity field itself. Taking these ideas further

would be a severe mathematical challenge.

8. Concluding remarks

All spontaneous imbalance scenarios must involve a

radiation reaction of one kind or another. Lighthill’s

achievement was to find a set of cases in which the ef-

fective source strengths are insensitive to the radiation

reactions they provoke, with all the conceptual and

computational simplifications that follow. By contrast,

the non-shallow-water dipole examples involve source

strengths that become sensitive to radiation reactions as

Rossby numbers R approach unity.

There is yet another intriguing twist. A recent theo-

retical discovery, the hyperbalance equations, has given

us the first fully consistent PV inversion operators

of arbitrarily high formal accuracy. A quick review of

7 For that case, RLagr is estimated at the nominal depth z 5

20.21 in V07’s dimensionless units, corresponding to the upper

heavy line in the bottom left panel of Fig. 1 above. The half

wavelength was measured from V07’s Fig. 1a (not reproduced

here), whose dimensionless length and width are both 20p units.

The half wavelength is about 12 units. V07’s Fig. 11a shows hori-

zontal velocity vectors and isopleths at the same nominal depth,

z 5 20.21, in a plot whose dimensionless length and width are

45.5 units. From this information it can be determined that the

flow through the central half wavelength is accurately along the

streamwise midplane and lies mostly within the |v| 5 2.5 isopleth,

the innermost isopleth surrounding a central maximum |v| value of

3.0 units. To go into the comoving frame, one must subtract ;0.2

units, so that on the streamwise midplane the values 2.5 and 3

become roughly 2.3 and 2.8 units. Taking the half-wavelength

particle travel time as th 5 12/2.6 units, and noting from V07 (p.

362) that p/f 5 5 units exactly, we get RLagr 5 5/(12/2.6) 5 1.1. The

case with RLagr 5 0.44 is most thoroughly described in V08, where

Fig. 16 presents particle travel-time isochrones. The travel time

through a quarter-wavelength in the central source region, be-

tween the center of the region and the first vertical velocity ex-

tremum, can be read off from the figure as about 1.6 isochrone

intervals. This can be seen to be 1.6O2/4 in units of the inertia

period, after correcting a typographical error in the caption, where

O2/2 should be O2/4. So the time through a central half wavelength

is 6.4O2/4 half inertia periods, making RLagr 5 (6.4O2/4)21 5 0.44.

I am grateful to Dr Á. Viúdez for supplying the numerical infor-

mation reproduced in this footnote.
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the essentials can be found in McIntyre (2008), and

a thorough and comprehensive development of the

theory, including mathematical demonstrations that

it has to take the generic form it does, can be found in

Mohebalhojeh and McIntyre (2007a). Like their pre-

decessors, going back to Hinkelmann’s forecast ini-

tialization work of the 1950s, these highly accurate

inversion operators depend on computing diagnostic

estimates of time derivatives ›n/›tn of the flow fields. So

if a flow is exactly steady, then the time derivatives and

their diagnostic estimates should all go to zero and the

PV inversion should become exact, just as it does in

trivial cases like steady circular vortices. But how does

that square with the discovery of the new dipole solu-

tions? Can one ‘‘invert’’ the PV field in such a way as to

obtain the comoving gravity waves as well, as recently

suggested for quite different reasons by Hakim (2008)?

The answer is probably yes and no. It should be no for

diffusionless, ideal-fluid dynamics because it is unlikely

that any inversion operator would make mathematical

sense for a steady but singular flow field. Such a flow

field would be expected from the nature of the wave

capture process and the finite-amplitude validity, albeit

dynamical instability, of plane inertia–gravity waves.

Such a flow field would also violate the diffusionless

‘‘sign reversal property’’ discussed in Ford et al. (2000).

The answer should be yes when the inversion operators

are generalized to include nonideal flow with, for in-

stance, artificial diffusivities or hyperdiffusivities such

as those used in numerical models. In that case one

expects to find ranges of small diffusivities and Rossby

numbers R for which the departure from exact steadi-

ness is exponentially small in R—the captured gravity

waves having exponentially small amplitudes and the

dipole’s decay being correspondingly slow—and for

which a high-order PV inversion operator has an ex-

ponentially small error and, in particular, delivers a

close approximation to the complete flow field includ-

ing the diffusively damped gravity waves approaching

capture.

One further point seems worth making. The need to

replace the slow manifold by the fuzzy ‘‘slow quasima-

nifold,’’ whatever its thinness (section 4), seems to be a

generic and deeply important insight, originally coming

out of the cases studied by Lighthill, Errico, Warn, and

others but now, it seems, having still wider relevance.

For one thing, a generically fuzzy or chaotic structure is

strongly indicated by dynamical systems theory, begin-

ning with the standard example of the homoclinic

neighborhood in perturbed simple pendulum problems,

with the pendulum moving slowly near its unstable

equilibrium in partial analogy to the vortical motion in

the fluid problem. And in the fluid problem the chaotic

structure is no more than one naturally expects from the

Lighthill picture together with the conspicuous un-

steadiness, and the apparently chaotic evolution, of most

cases of vortical motion. It is natural to expect at least

this level of insight to apply to continuous stratification

as well as to shallow water.

However, the new dipole examples—even more

clearly than the quasi-steady frontal examples of Snyder

et al. (1993)—have revealed an important variation

on the generic theme, because they show that in strati-

fied flows the spontaneous emission of gravity waves can

be a steady process somewhat like mountain wave

generation. If nothing else happens, the waves undergo

capture and never escape from their ‘‘prison’’ within

the dipole. But such idealized scenarios are over-

whelmingly improbable in practice, important though

they have turned out to be for broadening our theo-

retical insight.

Imagine, then, a pair of dipoles in collision, or a di-

pole interacting with almost any other vortex structure

in its surroundings. It would not take much vortex-flow

unsteadiness to allow some of the gravity waves to es-

cape from their prison within each dipole and thereafter

to become part of the ambient field of freely propa-

gating gravity waves, much as in OSD95 and its suc-

cessor studies. All these gravity waves can be regarded

as contributing to the fuzziness of the slow quasimani-

fold.

So now there comes yet another new insight: that the

slow quasimanifold owes its thinness not only 1) to the

Lighthill mechanism for large-scale gravity waves and 2)

to jet flaccidity or fluviality in Gulf-stream-like cases

with meander scales � LD, but also 3) to the generic

vulnerability of small-scale gravity waves to wave cap-

ture. For such waves, escape from the prison of a pro-

genitor vortex dipole is unlikely to result in prolonged

freedom. Because of the tendency toward passive-tracer

behavior, there will be a robust statistical bias toward

subsequent wave capture. Such a bias is clear from

random-straining models such as that of Haynes and

Anglade (1997). It now seems that this, too, must be

part of why atmospheric and oceanic flows often stay

close to balance, and that it should count as a distinct

third mechanism contributing thereto.
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recent insights into the mathematical issues, which in

diffusive versions of these problems involve the ex-

tremely smooth behavior known as Gevrey regularity.
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